A Category Theoretic View of Nondeterministic Recursive Program Schemes

Daniel Schwencke
Formerly: Institut für Theoretische Informatik
Technische Universität Braunschweig, Germany
Now: German Aerospace Center
Braunschweig, Germany

13th September 2011, CSL Bergen
Recursive program schemes

- capture the structure of functional programs and
- serve to give a semantics for such programs.
Recursive program schemes

- capture the structure of functional programs and
- serve to give a semantics for such programs.

<table>
<thead>
<tr>
<th></th>
<th>recursive program schemes (RPS)</th>
<th>nondeterministic recursive program schemes (NDRPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>classical</td>
<td>1970s: Courcelle, Nivat,</td>
<td>~1980: Nivat, Arnold, Boudol, Poigné</td>
</tr>
<tr>
<td></td>
<td>Guessarian, ...</td>
<td></td>
</tr>
<tr>
<td>category</td>
<td>[De Marchi Ghani Lüth 2003]</td>
<td></td>
</tr>
<tr>
<td>theoretical</td>
<td>[Milius Moss 2006]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this talk</td>
</tr>
</tbody>
</table>
1. Nondeterministic Recursive Program Schemes
2. An Uninterpreted Category Theoretic Semantics
3. Comparison with Related Work
4. Future Work
Definition (classical RPS)

- disjoint finite sets G – given operation symbols
 \[\Phi \] – new operation symbols
 \[X \] – variables

\[\phi(x_1, \ldots, x_n) = t^\phi(x_1, \ldots, x_n) \quad \text{for all } \phi \in \Phi, \]
\[t^\phi \text{ term in } G \cup \Phi \]
Classical NDRPSs

Definition (classical NDRPS)

- disjoint finite sets G – given operation symbols
 Φ – new operation symbols
 X – variables
- special binary operation symbol or $\notin G \cup \Phi$
- $\phi(x_1, \ldots, x_n) = t^\phi(x_1, \ldots, x_n)$ for all $\phi \in \Phi_n$, t^ϕ term in $G \cup \Phi \cup \{\text{or}\}$

Example

$\phi(x) = g(x, x) \text{ or } g(x, \phi(x))$
Definition (classical NDRPS)

- disjoint finite sets \(G \) – given operation symbols
 \(\Phi \) – new operation symbols
 \(X \) – variables
- special binary operation symbol or \(\notin G \cup \Phi \)
- \(\phi(x_1, \ldots, x_n) = t^\phi(x_1, \ldots, x_n) \) for all \(\phi \in \Phi_n \),
 \(t^\phi \) term in \(G \cup \Phi \cup \{\text{or}\} \)

Example

\[\phi(x) = g(x, x) \text{ or } g(x, \phi(x)) \]
Definition (category theoretic NDRPS)

- polynomial endofunctors H and V on \textbf{Set}
- natural transformation $e : V \rightarrow \mathcal{P}^+ F^{H+V}$

Example (continued)

$H_X = X \times X \circ g, \quad V_X = X \circ \phi$

$e_X : V_X \rightarrow \mathcal{P}^+ F^{H+V}$
given by $e_X(\phi(x)) = \{ g(x, x), g(x, \phi(x)) \}$
Definition (category theoretic NDRPS)

- polynomial endofunctors \(H \) and \(V \) on \(\textbf{Set} \)
- natural transformation \(e : V \rightarrow \mathcal{P} + F^{H+V} \)

Example (continued)

\[
HX = \underbrace{X \times X}_{g}, \quad VX = \underbrace{X}_{\phi}
\]

\[
e_X : VX \rightarrow \mathcal{P} + F^{H+V}X \text{ given by } \\
e_X(\phi(x)) = \{ g(x, x), g(x, \phi(x)) \}
\]
Semantics of NDRPSs

- So far: NDRPSs purely syntactical constructs

- Now: give semantics for NDRPSs
 - non-trivial: recursion and non-determinism
 - uninterpreted and interpreted semantics
Semantics of NDRPSs

- So far: NDRPSs purely syntactical constructs

- Now: give semantics for NDRPSs
 - non-trivial: recursion and non-determinism
 - uninterpreted and interpreted semantics

- Here: uninterpreted semantics only
 - for classical NDRPSs in [Arnold Nivat 1977]
 - for category theoretic NDRPSs following
Uninterpreted Solutions

- $(\mathcal{P}^+, \eta^+, \mu^+)$ nonempty powerset monad
- (T^H, η^H, μ^H) with $\kappa^H : H \to T^H$ free completely iterative monad over H [Milius 2005]
Uninterpreted Solutions

- \((P^+, \eta^+, \mu^+)\) nonempty powerset monad
- \((T^H, \eta^H, \mu^H)\) with \(\kappa^H : H \to T^H\) free completely iterative monad over \(H\) [Milius 2005]
- distributive law \(H P^+ \to P^+ H\) extends to \(T^H P^+ \to P^+ T^H\)
- \(P^+ T^H\) composite monad by [Beck 1969]
Uninterpreted Solutions

- \((\mathcal{P}^+, \eta^+, \mu^+)\) nonempty powerset monad
- \((T^H, \eta^H, \mu^H)\) with \(\kappa^H : H \to T^H\) free completely iterative monad over \(H\) [Milius 2005]
- distributive law \(H\mathcal{P}^+ \to \mathcal{P}^+H\) extends to \(T^H\mathcal{P}^+ \to \mathcal{P}^+T^H\)
- \(\mathcal{P}^+T^H\) composite monad by [Beck 1969]

Definition (uninterpreted solution of NDRPS \(e\))

Natural transformation \(e^\dagger : V \to \mathcal{P}^+ T^H\) such that the diagram

\[
\begin{array}{c}
V \\
\downarrow^e \\
\mathcal{P}^+ F^H + V \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \quad \quad \downarrow \\
\mathcal{P}^+ \mathcal{P}^+ T^H \\
\end{array}
\]

\[
\begin{array}{c}
\mathcal{P}^+ T^H \\
\downarrow \quad \quad \quad \downarrow \\
\mathcal{P}^+ T^H \\
\end{array}
\]

commutes.
Main Result

Definition

A NDRPS $e : V \rightarrow \mathcal{P}^+ F^H + V$ is called guarded if it factors

$$e \equiv (V \xrightarrow{e'} \mathcal{P}^+ H F^H + V \xrightarrow{\cdots} \mathcal{P}^+ F^H + V).$$
Main Result

Definition

A NDRPS $e : V \rightarrow \mathcal{P}^+ F^H + V$ is called **guarded** if it factors

$$ e \equiv (V \xrightarrow{e'} \mathcal{P}^+ HF^H + V \xrightarrow{...} \mathcal{P}^+ F^H + V). $$

Theorem

Every guarded NDRPS has a canonical greatest uninterpreted solution (w. r. t. componentwise and pointwise subset inclusion).

Moreover, for all uninterpreted solutions of a guarded NDRPS the set of finite cuttings of terms is the same.
Example (continued)

- NDRPS given by $e_X(\phi(x)) = \{ g(x, x), g(x, \phi(x)) \}$
- greatest solution: $e^\dagger_X(\phi(x)) = \{ \}

another solution: remove rightmost tree
An Intermediate Result

From H, \mathcal{P}^+ and $\lambda : H\mathcal{P}^+ \rightarrow \mathcal{P}^+H$ we obtain

- a functor $\mathcal{H} = H \cdot _ + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (\mathcal{P}^+ \cdot _, \eta^+_, \mu^+_)$ on $[\text{Set}, \text{Set}]$;
An Intermediate Result

From H, \mathcal{P}^+ and $\lambda : H\mathcal{P}^+ \to \mathcal{P}^+ H$ we obtain
- a functor $\mathcal{H} = H \cdot _+ + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (\mathcal{P}^+ \cdot _+, \eta^+_-, \mu^+_-) \text{ on } [\text{Set}, \text{Set}]$;
- a distributive law $\Lambda : \mathcal{H}\mathcal{M} \to \mathcal{M}\mathcal{H}$;
- equivalently, a lifting $\bar{\mathcal{H}}$ of \mathcal{H} to $[\text{Set}, \text{Set}]_\mathcal{M}$ [Mulry 1994].
From H, \mathcal{P}^+ and $\lambda : H\mathcal{P}^+ \to \mathcal{P}^+H$ we obtain

- a functor $\mathcal{H} = H \cdot - + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (\mathcal{P}^+ \cdot - , \eta^+_{-}, \mu^+_{-})$ on $[\text{Set}, \text{Set}]$;
- a distributive law $\Lambda : \mathcal{H}\mathcal{M} \to \mathcal{M}\mathcal{H}$;
- equivalently, a lifting $\overline{\mathcal{H}}$ of \mathcal{H} to $[\text{Set}, \text{Set}]\mathcal{M}$ [Mulry 1994].

Theorem

$$\eta^+(HT^H + \text{Id}) \cdot [\mu^H \cdot \kappa^H T^H, \eta^H]^{-1} : T^H \to \mathcal{P}^+(HT^H + \text{Id})$$

is a weakly final $\overline{\mathcal{H}}$-coalgebra.
An Intermediate Result

From H, \mathcal{P}^+ and $\lambda : H\mathcal{P}^+ \to \mathcal{P}^+ H$ we obtain
- a functor $\mathcal{H} = H \cdot - + \text{Id}$ on $[\text{Set}, \text{Set}]$;
- a monad $\mathcal{M} = (\mathcal{P}^+ \cdot -, \eta^+, \mu^+)$ on $[\text{Set}, \text{Set}]$;
- a distributive law $\Lambda : \mathcal{H} \mathcal{M} \to \mathcal{M} \mathcal{H}$;
- equivalently, a lifting $\bar{\mathcal{H}}$ of \mathcal{H} to $[\text{Set}, \text{Set}] \mathcal{M}$ [Mulry 1994].

Theorem

$$\eta^+(HT^H + \text{Id}) \cdot [\mu^H \cdot \kappa^H T^H, \eta^H]^{-1} : T^H \to \mathcal{P}^+(HT^H + \text{Id})$$

is a weakly final $\bar{\mathcal{H}}$-coalgebra.

Proof (idea).

For every $\bar{\mathcal{H}}$-coalgebra, canonically construct a greatest homomorphism into the final $\bar{\mathcal{H}}$-coalgebra using
- category theoretic determinization and
- unique solutions of deterministic recursive equations.
Relation to Classical NDRPSs

Category theoretical NDRPSs cover and extend the classical ones [Arnold Nivat 1977]:

- definition of NDRPS
 - translation classical to category theoretical NDRPS
 - generalization to infinite equation systems and infinite sets

- uninterpreted semantics
 - recover classical greatest fixed point result
 - goes beyond greatest fixed points
Relation to Category Theoretical RPSs

[Milius Moss 2006]

RPS $V \rightarrow T^{H+V}$

NDRPS $V \rightarrow \mathcal{P}+F^{H+V}$

A = Set, H and V polynomial, $F^H+V \hookrightarrow T^H+V$ replace $(P+\eta+\mu)$ by $(\text{Id}, \text{id}, \text{id})$.
Relation to Category Theoretical RPSs

\[\text{[Milius Moss 2006]} \]

RPS \(V \rightarrow T^{H+V} \)

NDRPS \(V \rightarrow P^+ F^{H+V} \)

\(A = \text{Set}, \)
H and V polynomial,
\(F^{H+V} \hookrightarrow T^{H+V} \)

replace \((P^+, \eta^+, \mu^+)\) by \((\text{Id}, \text{id}, \text{id})\)

restricted RPS \(V \rightarrow F^{H+V} \)
Relation to Category Theoretical RPSs

\[[\text{Milius Moss 2006}] \]
RPS \(V \rightarrow T^{H+V} \)
unique uninterp. solution

\[A = \text{Set}, \]
\(H \) and \(V \) polynomial,
\(F^{H+V} \leftrightarrow T^{H+V} \)

restricted RPS \(V \rightarrow F^{H+V} \)
unique uninterp. solution

NDRPS \(V \rightarrow \mathcal{P}^+ F^{H+V} \)
canonical greatest uninterp. solution

replace \((\mathcal{P}^+, \eta^+, \mu^+)\) by \((\text{Id}, \text{id}, \text{id})\)
Possibilities due to category theoretic framework:
Possibilities due to category theoretic framework:

- generalize H and V (analytic/weak pullback preserving functors?)

D. Schwencke: A Category Theoretic View of NDRPSs
Future Work

Possibilities due to category theoretic framework:

- generalize H and V (analytic/weak pullback preserving functors?)

- try other effects / monads
 - composite RPSs / $((-)^E, \eta^E, \mu^E)$
 - partial RPSs / $(\text{Id} + 1, \eta^{pa}, \mu^{pa})$
 - NDRPSs with \emptyset / $(\mathcal{P}, \eta^P, \mu^P)$
 - probabilistic RPSs / $(\mathcal{D}, \eta^D, \mu^D)$
Future Work

Possibilities due to category theoretic framework:

- generalize H and V (analytic/weak pullback preserving functors?)

- try other effects / monads
 - composite RPSs / $((-)^E, \eta^E, \mu^E)$
 - partial RPSs / $(\text{Id} + 1, \eta^{pa}, \mu^{pa})$
 - NDRPSs with \emptyset / $(\mathcal{P}, \eta^P, \mu^P)$
 - probabilistic RPSs / $(\mathcal{D}, \eta^D, \mu^D)$

- generalize to infinite terms (using complete Elgot monads?)
Future Work

Possibilities due to category theoretic framework:

- generalize H and V (analytic/weak pullback preserving functors?)
- try other effects / monads
 - composite RPSs / $((\neg)^E, \eta^E, \mu^E)$
 - partial RPSs / $(\text{Id} + 1, \eta^{pa}, \mu^{pa})$
 - NDRPSs with \emptyset / $(\mathcal{P}, \eta^P, \mu^P)$
 - probabilistic RPSs / $(\mathcal{D}, \eta^D, \mu^D)$
- generalize to infinite terms (using complete Elgot monads?)
- interpreted solutions (using [Milius Palm S 09]?)

D. Schwencke: A Category Theoretic View of NDRPSs
Thank you... for your attention!

daniel.schwencke@dlr.de
A RPS

- captures the structure of a functional program
- is a system of recursive equations for operation symbols
Classical RPSs

A RPS
- captures the structure of a functional program
- is a system of recursive equations for operation symbols

Definition (classical RPS)
- disjoint finite sets G – given operation symbols
 - Φ – new operation symbols
 - X – variables
- $\phi(x_1, \ldots, x_n) = t^\phi(x_1, \ldots, x_n)$ for all $\phi \in \Phi_n$, t^ϕ term in $G \cup \Phi$
Classical RPSs

A RPS

- captures the structure of a functional program
- is a system of recursive equations for operation symbols

Definition (classical RPS)

- disjoint finite sets G – given operation symbols
 - Φ – new operation symbols
 - X – variables
- $\phi(x_1, \ldots, x_n) = t^\phi(x_1, \ldots, x_n)$ for all $\phi \in \Phi_n$, t^ϕ term in $G \cup \Phi$

Example

$$\phi(x) = f(x, \phi(g(x)))$$
$$\psi(x) = f(\phi(g(x)), g(g(x)))$$
Definition (category theoretic RPS [Milius Moss 2006])

- endofunctors H and V on a category \mathcal{A} with finite coproducts
 s.t. $\forall X \in \text{Obj}(\mathcal{A}) \exists$ final coalgebras for $H(\cdot) + X$ and $(H + V)(\cdot) + X$
- natural transformation $e : V \rightarrow T^{H+V}$
Definition (category theoretic RPS [Milius Moss 2006])

- endofunctors H and V on a category \mathcal{A} with finite coproducts
 s. t. $\forall X \in \text{Obj}(\mathcal{A}) \exists$ final coalgebras for $H(-) + X$ and $(H + V)(-) + X$
- natural transformation $e : V \rightarrow T^{H+V}$

- generalizes classical RPSs
Definition (category theoretic RPS [Milius Moss 2006])

- endofunctors H and V on a category \mathcal{A} with finite coproducts s. t. $\forall X \in \text{Obj}(\mathcal{A}) \exists$ final coalgebras for $H(-) + X$ and $(H + V)(-) + X$
- natural transformation $e : V \to T^{H+V}$

- generalizes classical RPSs

Example

$\mathcal{A} = \text{Set}$, $HX = X \times X + X$, $VX = X + X$

$e_X : VX \to T^{H+V}X$ given by

$e_X(\phi(x)) = f(x, \phi(g(x)))$

$e_X(\psi(x)) = f(\phi(g(x)), g(g(x)))$
<table>
<thead>
<tr>
<th></th>
<th>recursive program schemes (RPS)</th>
<th>nondeterministic recursive program schemes (NDRPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>classical</td>
<td>$\phi(x_1, \ldots, x_n) = t^\phi$</td>
<td>$\phi(x_1, \ldots, x_n) = t^\phi$</td>
</tr>
<tr>
<td></td>
<td>t^ϕ term in $F \cup \Phi$</td>
<td>t^ϕ term in $F \cup \Phi \cup {\text{or}}$</td>
</tr>
<tr>
<td>category theoretical</td>
<td>$e : V \rightarrow T^{H+V}$</td>
<td>$e : V \rightarrow \mathcal{P}^{+F^{H+V}}$</td>
</tr>
</tbody>
</table>

D. Schwencke: A Category Theoretic View of NDRPSs
A. Arnold and M. Nivat.
Non Deterministic Recursive Program Schemes.

N. Ghani, C. Lüth and F. de Marchi.
Solving Algebraic Equations using Coalgebra.

I. Hasuo, B. Jacobs and A. Sokolova.
Generic Trace Semantics via Coinduction.

S. Milius and L. S. Moss.
The Category Theoretic Solution of Recursive Program Schemes.

S. Milius, T. Palm and D. Schwencke.
Complete Iterativity for Algebras with Effects.